J Chem Theory Comput 2008, 4:1230?236. 229. Ufimtsev IS, Mart ez
Raphics processing unit. J Chem Theory Comput 2008, 4:1230?236. 229. Ufimtsev IS, Mart ez TJ: Quantum chemistry on graphical processing units. 1. Strategies for two-electron integral evaluation. J Chem Theory Comput 2008, 4:222?31. 3-Nitro-6-(trifluoromethyl)pyridin-2(1H)-one 230. Ufimtsev IS, Martinez TJ: Quantum chemistry on graphical processing units. 2. Direct self-consistent-field implementation. J Chem Theory Comput 2009, 5:1004?015. n-Phenylpiperazine-1-carboxamide 231. Ufimtsev IS, Martinez TJ: Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J Chem Theory Comput 2009, 5:2619?628. 232. Luehr N, Ufimtsev IS, Mart ez TJ: Dynamic precision for electron repulsion integral evaluation on graphical processing units (GPUs). J Chem Theory Comput 2011, 7:949?54. 233. Kulik HJ, Luehr N, Ufimtsev IS, Martinez TJ: Ab initio quantum chemistry for protein structures. J Phys Chem B 2012, 116:12501?2509. 234. Titov AV, Ufimtsev IS, Luehr N, Martinez TJ: Generating efficient quantum chemistry codes for novel architectures. J Chem Theory Comput 2013, 9:213?21. 235. Ufimtsev IS, Luehr N, Martinez TJ: Charge transfer and polarization in solvated proteins from ab Initio molecular dynamics. J Phys Chem Lett 2011, 2:1789?793. 236. Mori T, Mart ez TJ: Exploring the conical intersection seam: the seam space nudged elastic band method. J Chem Theory Comput 2013, 9:1155?163. 237. Kussmann J, Beer M, Ochsenfeld C: Linear-scaling self-consistent field methods for large molecules. Wiley Interdiscip Rev Comput Mol Sci 2013, 3:614?36. 238. Leszczynski J: Linear-Scaling Techniques in Computational Chemistry and Physics: Methods and Applications. New York: Springer; 2011. 239. Gordon MS, Fedorov DG, Pruitt SR, Slipchenko LV: Fragmentation methods: a route to accurate calculations on large systems. PubMed ID:https://www.ncbi.nlm.nih.gov/pubmed/25386826 Chem Rev 2012, 112:632?72. 240. Alexeev Y, Mazanetz MP, Ichihara O, Fedorov DG: GAMESS as a free quantum-mechanical platform for drug research. Curr Top Med Chem 2012, 12:2013?033. 241. Day PN, Jensen JH, Gordon MS, Webb SP, Stevens WJ, Krauss M, Garmer D, Basch H, Cohen D: An effective fragment method for modeling solvent effects in quantum mechanical calculations. J Chem Phys 1996, 105:1968?986. 242. Gordon MS, Freitag MA, 4-Diacetyl-2 Bandyopadhyay P, Jensen JH, Kairys V, Stevens WJ: The effective fragment potential method: a QM-based MM approach to modeling environmental effects in chemistry. J Phys Chem A 2001, 105:293?07. 243. Gordon MS, Slipchenko L, Li H, Jensen JH: The effective fragment potential: a general method for predicting intermolecular interactions. In Annu Rep Comput Chem, Volume 3. Edited by Spellmeyer DC, Wheeler PubMed ID:https://www.ncbi.nlm.nih.gov/pubmed/17591728 R. Oxford: Elsevier Science; 2007:177?93.Tuszynski et al. Theoretical Biology and Medical Modelling 2014, 11:52 http://www.tbiomed.com/content/11/1/Page 41 of244. Fedorov DG, Kitaura K: The importance of three-body terms in the fragment molecular orbital method. J Chem Phys 2004, 120:6832?840. 245. Imamura A, Aoki Y, Maekawa K: A theoretical synthesis of polymers by using uniform localization of molecular orbitals: Proposal of an elongation method. J Chem Phys 1991, 95:5419?431. 246. Kobayashi M, Nakai H: Divide-and-Conquer Approaches to Quantum Chemistry: Theory and Implementation; 2011. 247. Fedorov DG, Kitaura K: Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. J Phys Chem A 2007, 111:6904?914. 248. Fedorov D, Kitaura K: The Fragment Molecular Orbital Method: Practical Application.